
An Empirical Evaluation of PTE Coalescing
Eliot H. Solomon

Rice University
Houston, Texas, USA

ehs3@rice.edu

Yufeng Zhou
Rice University

Houston, Texas, USA
yufengz@rice.edu

Alan L. Cox
Rice University

Houston, Texas, USA
alc@rice.edu

ABSTRACT
Superpages (also known as huge pages) are an effective technique
for reducing the latency of virtual-to-physical address translation
on modern processors. However, the large size of the 2 MB and 1 GB
superpages supported by x86-64 processors continues to present
a challenge to the operating system’s ability to form superpages,
given the mandatory contiguity, alignment, and attribute require-
ments of a superpage. Recent work proposes medium-sized super-
pages as a potential solution, by allowing the creation of smaller
superpages where 2 MB and larger superpages have not formed
or will not be possible to form. Notably, AMD processors starting
with the Zen microarchitecture have offered a “PTE Coalescing”
feature where the hardware opportunistically and transparently
creates, from underlying consecutive and aligned 4 KB mappings
in the page table, 16 KB or 32 KB mappings to be cached in the
TLB. On the surface, this feature requires no modifications to the
operating system or the compiler toolchain, exploiting only coinci-
dental contiguity and alignment. Nonetheless, there are ways that
either the operating system or the toolchain can bemade coalescing-
aware and hence make better use of PTE Coalescing. This paper
first investigates undocumented aspects of PTE Coalescing, and
then evaluates some operating system and toolchain optimizations
which explicitly take advantage of it. We find that an operating
system that is coalescing-friendly reduces L1 ITLB misses by 50%-
80% compared to an operating system that is coalescing-unaware.
For a Clang compilation workload, a coalescing-friendly operating
system coupled with PTE Coalescing all but eliminates L2 ITLB
misses. Last but not least, we evaluate the impact of granularity
(16 KB vs 32 KB) on the effectiveness of PTE Coalescing. We find
that reducing the coalescing granularity from 32 KB to 16 KB leads
to a 1.3x-20.5x reduction in 4 KB L2 DTLB misses in a wide variety
of workloads.

CCS CONCEPTS
• Computer systems organization; • Software and its engi-
neering → Virtual memory;

KEYWORDS
virtual memory, virtual-to-physical address translation, translation
look-aside buffer, superpages, page table entry coalescing

1 INTRODUCTION
Superpages (also known as huge pages) are a combined hardware
and software technique used to reduce the latency of virtual-to-
physical address translation on modern processors. By enabling a
single entry in the processor’s translation look-aside buffer (TLB)
to map a large block of physical memory that consists of many

base-sized pages, they expand the TLB’s reach, resulting in higher
TLB hit rates and improved performance for many applications.

On x86-64 CPUs, which have a base page size of 4 KB, the most
common superpage sizes are 2 MB and 1 GB, corresponding to
the amount of physical memory mapped by a single level two
(“page directory”) and level three (“page directory pointer table”)
page table entry respectively. Consequently, these are the sizes that
operating systems like Linux through its Transparent Huge Pages
(THP) feature and FreeBSDwith its reservation-based approach [30]
have focused on supporting [40].

However, the 2 MB and 1 GB superpages supported by x86-
64 have a number of limitations. First, their relatively large size
constrains the operating system’s ability to form superpages for
smaller objects without causing excessive physical memory frag-
mentation [26]. Second, these superpages can only map aligned,
physically contiguous regions of memory where each constituent
4 KB page has identical attributes.

Medium-sized superpages offer a potential solution to these prob-
lems, and a variety of different strategies for their implementation
have been developed. Two broad categories, implicit and explicit,
exist. Implicitly created superpages are transparent to the operating
system and require no modifications to it. One example of this ap-
proach is known as a coalesced TLB. Upon a TLB miss, the memory
management unit (MMU) implementing a coalesced TLB examines
the page table entries (PTEs) neighboring the entry needed to han-
dle the miss. If it discovers a group of PTEs mapping contiguous
physical memory, it may coalesce them into a single TLB entry.

A coalesced TLB known as CoLT was proposed by Pham et al.
in 2012 [35]. Two varieties were described, CoLT-SA and CoLT-FA,
with the former being targeted at set-associative TLBs and the latter
at fully-associative TLBs. CoLT-SA first alters the TLB indexing
scheme to ensure that consecutive virtual pages are mapped to the
same set, and then augments each TLB entry with multiple valid
bits, each corresponding to a base page that could potentially be
included in a superpage represented by that entry. CoLT-FA, on
the other hand, stores a base virtual address and a number of pages
within a separate superpage TLB structure.

The CoLT design offers a number of advantages over the 2 MB
and 1 GB superpages typically offered by x86-64 processors. Most
notably, neither CoLT approach requires alignment, just physical
contiguity. In addition, CoLT-FA allows a variable number of con-
secutive PTEs to be coalesced into a single entry, and CoLT-SA
drops the requirement for them to be consecutive (i.e. “holes” can
exist in a superpage). Subsequent work has extended CoLT to ex-
ploit so-called “clustered spatial locality” by mapping clusters of
virtual pages to clusters of physical pages without even a strict
contiguity requirement [34].

In contrast, the second category of medium-sized superpage
implementations require explicit operating system support. An



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

example of this category is the ARMv8-A architecture’s Contiguous
bit [7]. If an ARMv8-A processor is operating with a base page
size of 4 KB, when the Contiguous bit is set in every PTE within
a group of 16 base page PTEs that together map 64 KB of aligned
and physically contiguous memory with identical attributes, the
MMU’s TLB is permitted to use a single 64 KB TLB entry to cache
the mappings defined by those 16 PTEs. It is the responsibility of the
operating system to set the Contiguous bit only when PTEs conform
to this set of requirements. However, neither THP under Linux nor
Superpages under FreeBSD currently utilize the Contiguous bit to
create medium-sized superpages automatically.

The “PTE Coalescing” feature offered by AMD’s Ryzen1 proces-
sors can be seen as a simplified, real-world implementation of CoLT,
bringing support for medium-sized superpages to the masses. A
recent AMD Zen 3 optimization manual offers the most detailed
publicly available description of the feature: “If a 16-Kbyte aligned
block of four consecutive 4-Kbyte pages are also consecutive and
16-Kbyte aligned in physical address space and have identical page
attributes, the processor may opportunistically store them in a sin-
gle TLB entry resulting in increased effective capacity for both L1
and L2 DTLB and ITLB” [3]. Note however that on older Ryzen
processors (Zen and Zen+) all eight PTEs contained within the
same 64-byte cache line are examined for potential coalescing as a
32 KB mapping upon a TLB miss [2, 4].

However, Ryzen’s PTE Coalescing is clearly less general than
both CoLT techniques in that it requires alignment and does not
allow for any pages within a group of 4 or 8 to be missing from
the superpage mapping. Thus, the measurements from the CoLT
paper that quantify the physical memory contiguity that arises
coincidentally from Linux’s use of a buddy allocator for physical
memory management do not effectively quantify the potential for
PTE Coalescing’s effectiveness since those figures ignore alignment.

Furthermore, AMD’s public documentation for the Ryzen family
of processors provides only limited information about PTE Coalesc-
ing, and questions still remain as to the feature’s exact behavior. For
example, if a contiguous and aligned block of clean read-write PTEs
are all accessed, will the resulting coalesced page be read-write
or read-only? A read-write mapping can handle a write without
further intervention, but gives up the ability for the processor to
track dirty pages at a 4 KB granularity.

Although Ryzen’s PTE Coalescing can create medium-sized su-
perpages without the direct involvement of the operating system,
an operating system that is aware of the requirements for PTE
Coalescing can potentially help the MMU create more medium-
sized superpage mappings than would otherwise be possible. This
is because a superpage-aware operating system can make physical
memory allocation decisions that intentionally create the align-
ment and contiguity required for coalescing, rather than limiting
the MMU hardware to exploiting only that which is created co-
incidentally, as does Linux’s buddy allocator. In contrast to THP
under Linux, FreeBSD’s reservation-based physical memory alloca-
tor speculatively reserves aligned and contiguous physical memory
for regions within the heap even when they are currently too small

1We use “Ryzen” throughout the paper for simplicity and consistency to refer to AMD
processors since the Zen microarchitecture generation. As a microarchitectural feature,
PTE Coalescing is available in both the Ryzen and the EPYC product lines, and is not
limited to Ryzen.

to be mapped by a 2 MB superpage. Whether or not such regions
ever grow in size and are ever mapped by a 2 MB superpage, in
the meantime, the base pages that are allocated from the reser-
vation will have the alignment and contiguity required by PTE
Coalescing. In other words, PTE Coalescing and reservation-based
allocation have the potential to interact to produce performance
benefits greater than either in isolation at zero additional cost.

This paper’s contributions are:
• We use a custom microbenchmark to experimentally deter-

mine several undocumented aspects of the PTE Coalescing
feature’s behavior.

• We evaluate how explicitly creating physical contiguity and
alignment using a reservation-based allocator impacts the
effectiveness of PTE Coalescing.

• We indirectly characterize the physical contiguity and align-
ment that is coincidentally created by a buddy allocator by
contrasting its behavior with that of a reservation-based
allocator.

• We evaluate how the region size reduction from 8 to 4 PTEs
has impacted the effectiveness of PTE Coalescing.

• We suggest additional ways for the compiler toolchain and
operating system to make better use of PTE Coalescing.

The rest of this paper is organized as follows. Section 2 provides
background for the sections that follow. Section 3 describes the mi-
crobenchmark that we developed for characterizing undocumented
details of the PTE Coalescing behavior of Ryzen processors and
our observations from running that microbenchmark on Ryzen
2700X (Zen+) and 5900X (Zen 3) processors. Section 4 describes
our methodology for evaluating the impact of PTE Coalescing on a
variety of applications under Linux and FreeBSD. Section 5 presents
the results of our evaluation. Section 6 discusses additional related
work. Finally, Section 7 summarizes our conclusions.

2 BACKGROUND
In this section, we first describe some relevant aspects of the support
for transparent superpages in Linux and FreeBSD. Both systems
focus on 2 MB and 1 GB superpages, and do not, for example, uti-
lize ARMv8-A’s Contiguous bit within base page PTEs to create
medium-sized superpages automatically on that architecture. We
then describe some relevant aspects of the ELF executable file for-
mat.

2.1 Linux THP
Linux Transparent Huge Pages (THP) uses two complementary
approaches to create superpage mappings for anonymous virtual
memory, such as an application’s heap. First, upon the first page
fault to a virtually aligned superpage-sized region within an appli-
cation’s address space, if the entire region is logically accessible
and aligned, contiguous physical memory is available for allocation,
the page fault handler allocates physical memory for a superpage,
zeroes that physical memory, and maps it as a superpage. Second,
when physical memory is heavily fragmented and thus aligned,
contiguous physical memory is difficult to allocate at page fault
time, a kernel daemon, khugepaged, compacts physical memory to
make aligned, contiguous physical memory available and promotes
an application’s base pages into superpages by first copying the



An Empirical Evaluation of PTE Coalescing

base pages into aligned, contiguous physical memory and then
mapping that physical memory as a superpage.

However, Linux does not transparently create superpage map-
pings for code or data that is demand paged from a regular, disk-
based file system. Nonetheless, there are two different workarounds
that are commonly employed to map the code and data of an ex-
ecutable file with superpages. As the first workaround, the user
copies the executable file to a special huge page file system and
runs that copy of the executable [29]. As the second workaround,
during initialization, the application first copies its own code and
data from their original virtual memory regions that are demand
paged from the executable file to superpage-backed anonymous
memory, and then the application remaps the superpage-backed
memory to the original virtual memory regions for the code and
data using the mremap system call [28]. This second workaround
incurs significant overhead because “copy-and-remap” has to be
repeated every time an application is started.

2.2 FreeBSD Superpages
FreeBSD uses a reservation-based allocator [30] to create the phys-
ical contiguity and alignment that is needed to transparently offer
superpage support to applications. Upon the first page fault to a
virtually aligned superpage-sized region, the page fault handler
reserves the physically contiguous and aligned memory for a su-
perpage, but it does not yet map the entire superpage. Initially,
it only maps the base page that is required to resolve the page
fault. Additionally, in contrast to Linux THP, for anonymous vir-
tual memory, such as the application’s heap, the page fault handler
reserves the physical memory for a 2 MB superpage even if the en-
tire superpage-sized region is not currently logically accessible. In
effect, the page fault handler speculates that heap mappings which
are not yet large enough to encompass an entire 2 MB superpage
will eventually grow. Subsequent page faults to the same region
will allocate physical pages from this reservation instead of the
underlying buddy allocator.

When a reservation becomes fully populated, i.e., each of its
constituent pages has been allocated by a page fault, the page fault
handler checks to see if the pages’ attributes are identical, and if
they are, promotes the base page mappings to a superpage map-
ping in the page table. If the memory object (file) that contains
the new superpage is subsequently mapped into the address space
of another process, a fast path within the page fault handler will
immediately create another superpage mapping rather than in-
crementally promoting base pages into a superpage for a second
time.

In contrast to Linux THP, FreeBSD supports automatic superpage
creation for code and data from any file system, thereby avoiding
the overhead of either workaround used on Linux, such as the copy-
and-remap approach. In contrast to anonymous memory mappings,
mappings backed by a file, such as the text and read-only data sec-
tions of an executable file, are not expected to grow. Consequently,
reservations are only created for a file mapping when the file ex-
ceeds 2 MB in size, and a reservation is only created for the last
part of the file if the file is an exact multiple of 2 MB. Also, upon a
page fault to a file-backed region, the underlying file system will
typically load multiple pages, corresponding to the file system’s

block size. The page fault handler will map these pages, but unlike
the page triggering the fault, these neighboring pages will not have
the access bit set in the PTEs that map them.

If a reservation is not fully populated, it may be cheaply broken
at any time to reclaim physical memory. FreeBSD attempts to avoid
this as much as possible in order to preserve the amount of physi-
cally contiguous memory that is available to create superpages. In
practice, reservation breaking only occurs under severe memory
pressure.

2.3 The ELF Executable File Format
To load the contents of an ELF executable file into the address
space of a process, the operating system reads the file’s program
header table. This table defines a set of memory segments, where
each segment consists of adjacent sections within the file, such as
code and read-only data, that are to be mapped together within the
same region of the address space with the same access permissions.
However, the segments are not required to start or end on a page
boundary within the file or the address space. Consequently, a
physical page caching a portion of the file may contain code and/or
data from two different segments, and this page will be mapped
twice within the address space. For example, if the physical page
contains both code and read/write data, it may be mapped with
execute-only permissions as part of one segment and copy-on-write
permissions as part of another. Given the page granularity of virtual-
to-physical mappings, the data within that page appears alongside
the code with execute-only permissions in one segment and the
code within that page appears alongside the read/write data but
without execute permissions in the other.

This possible sharing of a physical page between two segments
necessarily affects the linker’s placement of segments within the
address space. Consider a segment that ends at offset off within a
page followed by a segment that begins at offset off within the same
page. The virtual address that is the end of the first segment must
be separated from the virtual address that is the start of the second
by a distance that is a multiple of the page size. Otherwise, the same
physical page could not be mapped at the end of the first segment
and the beginning of the second. In the ELF specification, this
restriction on the placement of segments is expressed as follows: the
virtual address at which a segment is mapped modulo maxpagesize
must equal the file position from which the segment is loaded
modulo maxpagesize.

Consider an ELF executable file that is 2 MB in size, created
by the LLVM project’s LLD linker, and stored in a regular, disk-
based file system under FreeBSD. Upon the first access to the file,
which is typically to the ELF header, a reservation will be created to
provide the physical memory for caching the file’s contents. Recent
versions of the LLD linker have a default maxpagesize of 4 KB,
but this can be changed from the command line2. Also by default,
executable files created by the LLD linker begin with a read-only
data segment that includes the ELF header. This read-only segment
is then followed by a code segment that has both read and execute
permissions. Unfortunately, with a maxpagesize of 4 KB, while
the code will be stored in physically contiguous memory from the

2In contrast, older versions of the LLD linker and GNU binutils ld linker had a default
maxpagesize of 2 MB.



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

reservation, it may not be properly aligned for PTE Coalescing to
occur.

For example, suppose that the read-only segment does not end
within the file at an offset that is a multiple of 4 KB. Such an ex-
ecutable is illustrated in Figure 1. By default, the code segment
will begin immediately after the read-only data segment in the file,
and so it will not begin at an offset that is a multiple of 4 KB. The
4 KB physical page in which the boundary between the read-only
data and code segments lies (page 6 in the figure) will be mapped
twice, back-to-back in the virtual address space. Because of this, the
virtual addresses of the second mapping as well as the subsequent
mappings for the rest of the code segment will be in effect “phase
shifted” by 4 KB relative to the physical addresses that they map.
In other words, the virtual and physical addresses will not be con-
gruent modulo 16 KB or 32 KB, which will make PTE Coalescing
impossible within the code and subsequent segments. In the figure,
when maxpagesize is set to 4 KB, the bracketed virtual pages are
not aligned to a 16 KB region of the process’s address space, so
they cannot be coalesced into a 16 KB superpage even though they
correspond to a physical superpage that is aligned and contiguous.

Manually setting maxpagesize to any power-of-two greater than
or equal to the PTE Coalescing size will address this issue. In Fig-
ure 1, when the maxpagesize is increased to 16 KB, a 16 KB gap is
left between corresponding locations in the twice-mapped physi-
cal page. This pushes the bracketed virtual pages into alignment,
allowing PTE Coalescing to create a single TLB entry that maps
Virtual Superpage 3 to Physical Superpage 2.

Changing the maxpagesize from its default of 4 KB to a larger
size like 2 MB has little to no impact on the size of the executable
files that result from the linking process. To verify this, we used
diff to compare the output of ls -l on /bin and /usr/bin from
a FreeBSD system compiled with a maxpagesize of 4 KB and an
otherwise identical system with maxpagesize set to 2 MB. Not a
single line changed between the two systems, indicating that no
significant file size impact exists. This is because the ELF format
allows the specified virtual mappings of each segment to be changed
without adding any additional padding to the file.

3 PTE COALESCING
As mentioned previously, upon a TLB miss, AMD’s PTE Coalescing
feature will examine a collection of PTEs adjacent to the one actu-
ally needed to resolve the miss. On Zen 2 and newer processors,
four aligned and contiguous PTEs (the first or second half of the
cache line containing the PTE) will be inspected, while Zen+ and
older processors examine eight entries (the entire cache line). If the
MMU finds that these entries map aligned and contiguous physical
memory and each has identical attributes, it may coalesce them
into a single TLB entry.

This high-level specification leaves out details that fall into two
main categories. First, it does not clearly specify how attributes that
change dynamically as memory is accessed, namely the accessed
and modified bits, impact the processor’s decision to coalesce or not,
nor does it explain how coalescing affects the processor’s ability
to manage these bits at a 4 KB granularity. Second, it does not
explain what happens to 4 KB mappings that are already in the
TLB when an overlapping coalesced mapping is created. To obtain

Figure 1: An illustration of an executable’s read-only and
code segmentswhenmapped into a virtual address spacewith
maxpagesize set to 4 KB and 16 KB. Blue shading represents
read-only data, green shading represents code, empty pages
represent an unmapped region in the address space, and
diagonal lines indicate that a portion of the address space is
not intended to be accessed.

these specifics, we take an experimental approach using a custom
trace-driven microbenchmark.

3.1 Microbenchmark
The microbenchmark is designed to run on a FreeBSD system with
reservation-based allocation enabled, but automatic 2MB superpage
promotion disabled. This allows the microbenchmark to allocate a
large chunk of aligned, physically contiguous memory to which it
can apply a variety of access patterns.

The program first requests from the operating system a 2 MB
aligned region of memory that by default is 8 MB in size. It then
explicitly zeroes the memory to ensure that physical pages have
actually been allocated to the region, and afterwards optionally
write-protects the pages. To finish preparing the memory, it clears
the accessed and modified bits of each page within the region using
the madvise system call.

The microbenchmark then allocates four performance counters
(see Table 2), all related to L1 misses in the data TLB. (Unfortunately,
no DTLB L1 hit counters are publicly documented by AMD.) They
are:

• L2 miss at a 4 KB granularity
• L2 hit at a 4 KB granularity
• L2 miss at a coalesced page granularity
• L2 hit at a coalesced page granularity

We define a coalescing subregion as an aligned group of 4 or 8
pages (depending on the processor model) within the larger region
of memory. A trace executed by the microbenchmark is divided
into words, which are each composed of one or more operations.
An operation corresponds to a read, write, or TLB invalidation of a
single page within a coalescing subregion. A word is a sequence of
operations that are applied to each coalescing subregion in order.



An Empirical Evaluation of PTE Coalescing

The performance counters are sampled after the execution of each
word in the trace.

For example, the trace r0 : r1 : r2 : r3 contains four words,
each with a single operation. This trace instructs the program to
read the first page within each subregion (first to last), then the
second page within each subregion, and so on. In contrast, the
trace r0 r1 r2 r3 is made up of a single word which contains
four operations. This corresponds to a sequential read of each page
within each subregion, which is equivalent to a sequential read of
every page within the larger region.

In order to make the performance counter values that it reports
more clear, the microbenchmark offers four different looping op-
tions.Operation repeats cause each operation to be issued more than
once. Local repeats apply each word to a given subregion multiple
times, while global repeats apply each word to every subregion in
order multiple times. Trace repeats loop the entire trace. In addition,
using the mincore system call, the microbenchmark can optionally
report the status of the valid, accessed, and modified bits for each
page within the region at the end of its execution.

To reduce the number of extraneous events that are captured by
the performance counters, the microbenchmark stores intermediate
counter values in an array and prints them all out after the trace
has finished executing, rather than displaying them to the user
incrementally.

Because the INVLPG instruction used to invalidate a specific page
in the TLB is privileged, we implement a small kernel module that
wraps it in a system call handler to facilitate its use from userspace
when needed.

3.2 Observed Behavior
Ryzen MMUs will coalesce 8 (on Zen and Zen+) or 4 (on Zen 2 and
Zen 3) L1 PTEs contained within the same cache line or half cache
line into a single TLB entry if they map aligned, contiguous physical
memory and their attributes are exactly identical. In other words,
the PTEs are required to map virtually aligned and contiguous
regions into similarly aligned and physically contiguous 4 KB pages.
Moreover, this means that each PTE must have the same protection
(e.g. read-only versus read-write), accessed bit, and modified bit.

The requirement that all of the accessed bits be identical implies
that each constituent page must have been touched to create a
medium-sized superpage mapping. This is because coalescing only
occurs when the MMU is trying to resolve a TLB miss due to a load
or store involving one of the pages, which sets the accessed bit on
that page. Hence, the only way for all of the accessed bits to be the
same is for them to all be set. (It bears mentioning that speculatively
executed loads and stores can potentially set the accessed flag.)

If a mapping is writable, there are two cases in which a coalesced
superpage can be created: all of the modified bits are set, or all
of them are unset. If they are all set, a read-write coalesced entry
will be created. If the bits are all not set (i.e. each page within the
coalescing region was read from but not written to), a coalesced
entry will be created that is logically read-only.

When a write occurs within this read-only entry, it will be de-
stroyed after rechecking the page table to confirm that the region is
still mapped as writable. The write causes the modified bits within
the PTEs to no longer be identical, and a read-write coalesced entry

will not be created until all of the constituent pages are written
to. This behavior is logically necessary to ensure that conflicting
4 KB and coalesced entries cannot exist simultaneously in the TLB,
and allows the hardware to maintain 4 KB granularity modified bit
tracking for coalesced entries.

The TPS paper [23] argues that under a LRU replacement policy,
there is no need to explicitly evict smaller page mappings when
a superpage mapping is created in the TLB. This is because the
smaller mappings will naturally be used less frequently than the
larger ones, so they will age out of the TLB on their own. The
behavior of AMD’s PTE Coalescing feature appears to be consistent
with this approach.

For example, if a coalesced mapping is explicitly destroyed by
issuing an INVLPG instruction that targets one of its constituent
pages, an access to a different page within the coalescing region
may still hit in the TLB due to a lingering 4 KB entry. Also, when a
logically read-only coalesced entry that was created out of clean,
read-write 4 KB entries is invalidated due to a write to one of its
pages, a 4 KB granularity TLB hit may be observed upon an access
to one of the other pages since some of the clean precursor entries
have not yet been evicted from the TLB. (If the access is a write,
the MMU will recheck that the relevant PTE is still writable while
walking the page table to set the modified bit, and a page fault will
occur if it is no longer writable.)

Finally, although AMD has not to our knowledge documented
the fact that Zen+ CPUs support coalesced ITLB entries, the per-
formance counters observed in Section 5 provide strong evidence
that older Ryzen CPUs indeed can use PTE Coalescing on code
mappings.

3.3 Discussion
These observations make it clear that PTE Coalescing is completely
transparent from an architectural standpoint. In other words, archi-
tecturally defined state, such as the PTE’s accessed and dirty bits,
is maintained as if PTE Coalescing did not exist. And, in fact, the
June 2023 edition of “AMD64 Architecture Programmer’s Manual
Volume 2: System Programming”, never mentions PTE Coalescing.

Nonetheless, an operating system could take actions informed
by these observations that lead to additional PTE Coalescing. For
example, consider code or read-only data that is demand paged
from a file. In general, the operating system will load into physi-
cal memory the pages neighboring that on which the page fault
occurred. Suppose that only 7 out of 8 loaded pages are accessed
on a Zen+ processor. The operating system could choose to set the
accessed bit on the one page that hasn’t been accessed, enabling
PTE Coalescing to occur.

4 METHODOLOGY
4.1 Experimental Setup
Our Zen+ system uses a Ryzen 2700X 8-core processor with 16 MB
of last-level cache (LLC), and our Zen 3 system uses a Ryzen 5900X
12-core processor with 64 MB of LLC. Both systems have 32 GB
of RAM. The implementation of both processors is evenly split
between two core complexes (CCXs). The 4 cores within a 2700X
CCX can only spill to the local half of the LLC [6], and likewise
for the 6 cores within a 5900X CCX [3]. Both processors support



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

two hyperthreads (SMT threads) per core, and all hyperthreads are
enabled on both systems. We pin workloads to just one CCX, and
often just one hyperthread to reduce the variance in our measure-
ments. Section 4.2 describes how we run the workloads in more
detail.

Table 1 shows the TLB organizations of the two processors. Both
TLB structures support page mappings of different sizes within the
same structure. While the L2 DTLB doesn’t cache 1 GB mappings
on either Zen+ or Zen 3, there is a 64-entry Page Directory Cache
(PDC) on Zen 3 that can hold 1 GB mappings evicted from the
L1 DTLB [3]. 1 GB instruction mappings are smashed into 2 MB
mappings and cached in the L2 ITLB [3, 6] on both Zen+ and Zen
3. AMD has not to our knowledge publicly documented support of
PTE Coalescing in the Zen+ ITLB; nonetheless, our data in Section 5
provide strong evidence that coalescing does occur. It is unclear
whether the granularity in this case is in fact 32 KB.

L1 ITLB
4KB, 32KB*, 2MB, 1GB 64 entries fully associative

L2 ITLB
4KB, 32KB*, 2MB 512 entries 8-way set associative

L1 DTLB
4KB, 32KB, 2MB, 1GB 64 entries fully associative

L2 DTLB
4KB, 32KB, 2MB 1536 entries 12-way set associative

(a) Zen+ (2700X)

L1 ITLB
4KB, 16KB, 2MB, 1GB 64 entries fully associative

L2 ITLB
4KB, 16KB, 2MB 512 entries 8-way set associative

L1 DTLB
4KB, 16KB, 2MB, 1GB 64 entries fully associative

L2 DTLB
4KB, 16KB, 2MB 2048 entries 16-way set associative

(b) Zen3 (5900X)

Table 1: Zen+ and Zen 3 TLB structures.

For 2700X versus 5900X comparisons, we use FreeBSD 14.0-
CURRENT (commit 9d843ba) as the operating system. FreeBSD
provides compile-time options to turn its reservation-based physical
memory allocator on or off. This allows us to study the impact
of PTE Coalescing’s granularity (16 KB vs. 32 KB) while holding
the physical memory allocation policy constant under an OS that
intentionally manages physical contiguity (Section 2.2). Both the
kernel and userland are built as standard production releases with
debugging options turned off. As explained in Section 2.3, a 4 KB
maxpagesize could shift a binary’s executable code segment out of
phase. We therefore build with a maxpagesize of 2 MB on FreeBSD
to enable PTE Coalescing on the main executable of applications.

For Linux versus FreeBSD comparisons using a binary compiled
on Linux, we use a 5900X system. The Linux distribution we use is
Ubuntu 22.04.2. We build the application binary using the default
GCC compiler and GNU toolchain. We then copy the binary to a

FreeBSD partition in the same system. The binary is then run as
is using the Linux binary compatibility layer in FreeBSD [8]. This
minimizes any potential differences between the Linux and FreeBSD
binaries. With this setup we study the difference in effectiveness of
an OS that intentionally creates physical contiguity and an OS that
relies on coincidental contiguity.

We collect information from hardware performance-monitoring
counters [2, 4] using the perf [11] utility on Linux and the
pmcstat [13] utility on FreeBSD. We measure user and kernel
space results separately; the numbers presented are for user space,
because by default kernel code and data are already mapped with
superpages to the fullest extent possible. We report the median of
three runs for all workloads. Table 2 lists the perf events used in
our tests. pmcstat uses the same event names as perf. L2 DTLB
hits and misses are computed as sums of page-size-specific L2
DTLB hits and misses. L1 DTLB misses are computed as sum of
L2 DTLB hits and misses, and the same procedure is followed
for the L1 ITLB. When results are presented as “per thousand
instructions” in Section 5, we divide the corresponding counter by
retired instructions and then multiply by 1000.

Counter Description Perf Events & Equations
Retired instructions ex_ret_instr
Unhalted clock cycles ls_not_halted_cyc
L2 DTLB 1GB hits ls_l1_d_tlb_miss.tlb_reload_1g_l2_hit
L2 DTLB 2MB hits ls_l1_d_tlb_miss.tlb_reload_2m_l2_hit
L2 DTLB coalesced hits ls_l1_d_tlb_miss.tlb_reload_{coalesced_page,32k}_l2_hit
L2 DTLB 4KB hits ls_l1_d_tlb_miss.tlb_reload_4k_l2_hit
L2 DTLB 1GB misses ls_l1_d_tlb_miss.tlb_reload_1g_l2_miss
L2 DTLB 2MB misses ls_l1_d_tlb_miss.tlb_reload_2m_l2_miss
L2 DTLB coalesced misses ls_l1_d_tlb_miss.tlb_reload_{coalesced_page,32k}_l2_miss
L2 DTLB 4KB misses ls_l1_d_tlb_miss.tlb_reload_4k_l2_miss
L2 ITLB hits bp_l1_tlb_miss_l2_tlb_hit
L2 ITLB misses bp_l1_tlb_miss_l2_tlb_miss
L1 ITLB misses L2 ITLB hits + L2 ITLB misses
L2 DTLB hits SUM(L2 DTLB {1GB,2MB,coalesced,4KB} hits)
L2 DTLB misses SUM(L2 DTLB {1GB,2MB,coalesced,4KB} misses)
L1 DTLB misses L2 DTLB hits + L2 DTLB misses

Table 2: Performance counters and their corresponding
perf/pmcstat event names [10, 14].

4.2 Workloads
Our workloads are based on eight widely used applications with
various code and data sizes and access patterns, covering a range
of application types, including a compiler (Clang), an out-of-core
PageRank implementation (GraphChi), a framework for linear clas-
sification training (BlockSVM), a multi-threaded data mining al-
gorithm (Freqmine), a language runtime with just-in-time (JIT)
compilation capabilities (the V8 Javascript runtime in Node.js),
a web application framework (Node.js), a machine emulator per-
forming JIT-compilation-like binary translation (QEMU), a physics
simulation algorithm (XSBench), and a cache-aware optimization
algorithm (Canneal).

The applications differ in whether they execute statically com-
piled code from files or JIT-compiled code in anonymous memory,
and whether they are statically linked or dynamically linked. Some
applications naturally run as multi-threaded workloads. Otherwise,
we run a single instance of the application within a single thread.



An Empirical Evaluation of PTE Coalescing

In either case, we assign dedicated hyperthreads, and we pin the
workloads to the assigned hyperthreads with the cpuset [12] util-
ity on FreeBSD or the taskset [17] utility on Linux, and measure
only the activity of those hyperthreads. Workloads are run one
at a time, and the machine is rebooted in between workloads to
ensure the same starting conditions for all. With the exception of
the hyperthreads running the workload, the machine is otherwise
idle.

Main Main Data Static JIT # of
exec exec size linking code threads
size RX (GB) in
(MB) aligned anon

Clang-Linux 108.5 Y <0.002 N N 1
Clang-FreeBSD 109.3 Y <0.002 N N 1
GraphChi-Linux 0.3 N 1 N N 4
GraphChi-FreeBSD 0.3 Y 1 N N 4
BlockSVM-Linux 0.15 N 2.3 N N 1
BlockSVM-FreeBSD 0.15 Y 2.3 N N 1
Freqmine-Linux 0.07 N 1.4 N N 4
Freqmine-FreeBSD 0.07 Y 1.4 N N 4
Node.js-Linux 71.6 Y 0.05 Y Y 1
Node.js-FreeBSD 41.6 Y 0.05 N Y 1
QEMU-Linux 15.8 N 0.7 N Y 1
QEMU-FreeBSD 15.5 Y 0.7 N Y 1
XSBench-Linux 0.05 N 5.8 N N 4
XSBench-FreeBSD 0.05 Y 5.8 N N 4
Canneal-Linux 0.22 N 0.7 N N 1
Canneal-FreeBSD 0.22 Y 0.7 N N 1

Table 3: Workload characteristics: the main executable size
in MB, whether the read-and-execute code (RX) segment of
the main executable is properly aligned for PTE coalescing,
the amount of heap or mmap’d data in GB, whether the main
executable is statically linked, whether the workload gener-
ates JIT-compiled code, and the number of threads. “-Linux”
stands for binaries built on the Linux system and running
either natively under Linux or with the compatibility layer
under FreeBSD. “-FreeBSD” stands for binaries built on the
FreeBSD system and running natively under FreeBSD.

Table 3 lists the characteristics of each workload. Main executa-
bles and shared libraries are demand-paged from ordinary files.
JIT-compiled code is generated at runtime and written into anony-
mous memory. The main executables range in size from 0.07 MB
to as large as 109.3 MB. The heaps range in size from a few MB
to as large as 2.3 GB. For FreeBSD native binaries, we build with
a modified maxpagesize of 2 MB to ensure proper alignment for
the RX segment of the main executable. On Linux, default linker
scripts are used, and proper alignment of the RX segment does
coincidentally occur in some cases.

Clang (SQLite): Clang is a C/C++ compiler with a built-in
assembler based on the LLVM infrastructure. We run one instance
of Clang 16.0.6 on one hyperthread, compiling the source code for
version 3.42.0 of the SQLite database [16] 10 times back-to-back.
The compilation options are “-O2 -DSQLITE_ENABLE_FTS3
-DSQLITE_ENABLE_RTREE -DSQLITE_ENABLE_DBSTAT_VTAB
-DSQLITE_ENABLE_RBU -DSQLITE_ENABLE_SESSION”.

GraphChi: GraphChi [27] uses out-of-core implementations for
solving graph computations. We use GraphChi to compute 3 itera-
tions of PageRank on the preprocessed Twitter-2010 dataset [25].

BlockSVM: BlockSVM [38] is a framework for linear classifica-
tion training. We measure a model training run on the kdd2010-
bridge dataset [24] with options “-a cookie -m 1 -O 10000 -s
1 -v 5 -M 1”. It has a relatively large data footprint.

Freqmine: Freqmine is a PARSEC [19] benchmark that imple-
ments an array-based version of the FP-growth (Frequent Pattern-
growth) method [22] for data mining. It has a relatively large data
footprint.

Node.js: Node.js [9] is a JavaScript runtime built on the V8
JavaScript engine [18]. We run version 18.16.1 of Node.js, and use
the React server-side rendering benchmark [1]. By default this
benchmark tries to run for a fixed amount of time, varying the
number of iterations. We instead fix the number of iterations to
achieve roughly the same duration as the benchmark would by
default. This ensures the same fixed amount of work across runs.
We run one instance of Node.js on one hyperthread.

QEMU: QEMU is an emulator that supports running programs
compiled for a different architecture [15]. We use QEMU version
8.0.3 with one hyperthread to run a full FreeBSD 14.0-CURRENT
system image built for AArch64. Within the single-vCPU emulated
system, we run the same workload as Clang (SQLite), using the
bundled Clang compiler to compile SQLite for a fixed number of
times. Since code targeted at AArch64 does not run natively on
our x86-64 processor, QEMU performs dynamic binary translation,
which generates a large amount of code that is stored in anonymous
virtual memory. We refer to this as JIT-compiled code.

XSBench: XSBench [36] implements a key computational kernel
of the Monte Carlo neutron transport algorithm. We ran version
20 under the OpenMP threading model with options “-t 4 -m
history -s large -l 34 -p 5000000 -G unionized”. This
results in a relatively large data footprint, and 4 hyperthreads being
fully utilized.

Canneal: Canneal is a PARSEC [19] benchmark that implements
a cache-aware simulated annealing. We measure a single-threaded
run on the 2500000.nets input with 6000 temperature steps, 15000
swaps per temperature step, and a starting temperature of 2000.

5 RESULTS
Our goal is to evaluate the extent to which reservations allow PTE
Coalescing and superpages to improve TLB performance for data
and code. There are three central questions that we attempt to
answer. First, what advantages for the effectiveness of PTE Co-
alescing do reservations have over simply relying on the buddy
allocator to produce coincidental contiguity? Second, how success-
ful is PTE Coalescing at increasing TLB coverage versus traditional
2 MB superpages? Third, what was the effect of AMD’s decision to
switch from 32 KB coalescing to 16 KB coalescing in their newer
processors? We first consider the impact of reservations on the data
TLB, and then examine the instruction TLB. After that, we discuss
how these observations relate to performance in terms of unhalted
clock cycles, and finally compare the newer 5900X CPU to the older
2700X.



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 3.781 3.064 3.964 3.121 0.792 2.628 1.916 1.453 0.913 3.009 2.173 1.811 1.249
L2 DTLB hits 3.439 2.807 3.593 2.908 0.757 2.476 1.836 1.401 0.880 2.686 1.950 1.631 1.113
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 0.136 0.000 0.000 0.268 0.000 0.000 0.110 0.196 0.000 0.000 0.124 0.249
L2 DTLB coalesced hits 0.516 0.429 0.078 2.312 0.180 0.000 1.365 0.920 0.424 0.000 1.142 0.807 0.377
L2 DTLB 4 KB hits 2.923 2.242 3.514 0.596 0.309 2.476 0.471 0.371 0.259 2.685 0.808 0.701 0.487
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 4.856 0.007 0.009 35.461 0.010 0.014 7.839 22.268 0.009 0.013 7.581 22.346
L2 DTLB coalesced hits (%) 15.013 15.270 2.179 79.484 23.757 0.003 74.352 65.685 48.256 0.008 58.551 49.473 33.897
L2 DTLB 4 KB hits (%) 84.987 79.874 97.815 20.507 40.781 99.987 25.634 26.476 29.476 99.983 41.436 42.947 43.757
L2 DTLB misses 0.342 0.257 0.371 0.212 0.035 0.151 0.080 0.052 0.033 0.324 0.223 0.180 0.135
L2 DTLB 1 GB misses 0.048 0.041 0.039 0.036 0.023 0.022 0.021 0.019 0.017 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.019 0.018 0.027 0.021 0.008 0.025 0.020 0.016 0.012 0.000 0.000 0.002 0.002
L2 DTLB coalesced misses 0.038 0.026 0.008 0.145 0.001 0.000 0.031 0.011 0.002 0.000 0.059 0.029 0.006
L2 DTLB 4 KB misses 0.237 0.172 0.298 0.010 0.004 0.104 0.008 0.006 0.003 0.324 0.164 0.149 0.127
L2 DTLB 1 GB misses (%) 14.067 15.914 10.511 16.917 66.143 14.638 25.905 35.610 50.182 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 5.448 6.885 7.150 10.110 21.561 16.806 25.489 31.432 36.563 0.040 0.053 1.152 1.473
L2 DTLB coalesced misses (%) 11.260 10.202 2.073 68.191 1.635 0.007 38.801 21.639 4.707 0.002 26.400 15.844 4.717
L2 DTLB 4 KB misses (%) 69.225 67.000 80.266 4.782 10.660 68.549 9.805 11.320 8.547 99.958 73.547 83.003 93.809
L1 ITLB misses 2.954 2.963 3.330 1.518 1.513 3.279 1.578 1.531 1.531 3.753 2.111 2.107 2.102
L2 ITLB hits 2.751 2.767 3.094 1.459 1.455 3.042 1.509 1.469 1.470 3.367 2.014 2.008 2.006
L2 ITLB misses 0.203 0.197 0.236 0.059 0.058 0.237 0.068 0.062 0.061 0.386 0.097 0.098 0.097
Unhalted clock cycles 0.779 0.777 0.781 0.767 0.755 1.019 1.004 1.000 0.998 1.383 1.355 1.349 1.342

Table 4: Clang (SQLite)

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 13.895 4.431 14.775 12.567 8.207 18.559 16.057 11.105 10.991 17.955 14.752 10.521 10.467
L2 DTLB hits 4.094 4.416 3.627 3.719 3.491 2.923 3.133 3.985 3.958 2.376 2.351 2.901 2.866
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 4.100 0.013 0.012 2.180 0.002 0.001 2.888 2.862 0.001 0.001 2.057 2.033
L2 DTLB coalesced hits 0.824 0.045 0.000 3.166 0.756 0.000 2.738 0.706 0.703 0.000 1.869 0.387 0.381
L2 DTLB 4 KB hits 3.270 0.271 3.614 0.541 0.555 2.922 0.393 0.391 0.393 2.375 0.481 0.457 0.452
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 92.846 0.347 0.327 62.445 0.060 0.047 72.469 72.311 0.052 0.039 70.904 70.927
L2 DTLB coalesced hits (%) 20.132 1.010 0.000 85.127 21.650 0.001 87.402 17.712 17.771 0.000 79.492 13.338 13.300
L2 DTLB 4 KB hits (%) 79.868 6.144 99.652 14.546 15.905 99.939 12.551 9.819 9.918 99.948 20.469 15.757 15.773
L2 DTLB misses 9.800 0.015 11.149 8.848 4.717 15.635 12.924 7.120 7.034 15.579 12.402 7.620 7.601
L2 DTLB 1 GB misses 0.006 0.003 0.005 0.005 0.005 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.008 0.007 0.006 0.006 0.060 0.001 0.001 0.857 0.828 0.002 0.002 1.606 1.602
L2 DTLB coalesced misses 0.541 0.000 0.000 6.879 2.745 0.000 10.267 3.637 3.607 0.000 9.076 2.742 2.732
L2 DTLB 4 KB misses 9.246 0.004 11.137 1.957 1.907 15.632 2.655 2.625 2.597 15.577 3.324 3.271 3.266
L2 DTLB 1 GB misses (%) 0.060 23.129 0.048 0.061 0.106 0.009 0.009 0.018 0.016 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 0.077 47.410 0.056 0.065 1.270 0.008 0.009 12.034 11.773 0.013 0.016 21.075 21.084
L2 DTLB coalesced misses (%) 5.525 0.596 0.002 77.750 58.191 0.002 79.438 51.077 51.289 0.000 73.180 35.993 35.947
L2 DTLB 4 KB misses (%) 94.338 28.865 99.894 22.125 40.433 99.982 20.543 36.870 36.922 99.987 26.803 42.932 42.969
L1 ITLB misses 0.029 0.000 0.028 0.029 0.028 0.288 0.300 0.305 0.313 0.000 0.000 0.001 0.001
L2 ITLB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 ITLB misses 0.029 0.000 0.028 0.028 0.028 0.288 0.300 0.305 0.313 0.000 0.000 0.000 0.001
Unhalted clock cycles 0.635 0.572 0.842 0.835 0.793 1.072 1.060 1.000 1.007 1.752 1.740 1.554 1.560

Table 5: GraphChi

The results of our evaluation can be found in Table 4 through
Table 9. All numbers presented are per thousand retired instructions,
with the exception of unhalted clock cycles, which are normalized
against a baseline of a FreeBSD binary running with superpages
enabled on a 5900X processor. The shaded sections break down
L2 DTLB hits and misses by page size, first in absolute terms and
then on a proportional basis. On Linux, “nothp” refers to a system
with Transparent Huge Pages disabled, while “thp” refers to one
with it enabled. On FreeBSD, “noresv” indicates that reservations
have been disabled, “reserv” means that reservations are turned
on, “super” data was collected with superpage promotion on, and

“nomdv” means that jemalloc has been instructed not to make
madvise system calls with the MADV_FREE flag. Only user space
hits, misses, and cycles are reported.

jemalloc makes MADV_FREE calls to indicate to the OS that a
particular region of memory no longer contains useful data and that
it may be asynchronously reclaimed by the system and remapped
on the next touch by the application. FreeBSD makes use of this
information by clearing the accessed and modified flags within the
region and prioritizing its constituent pages in the page reclamation
process. This forces the virtual memory system to demote any
2 MB superpages that partially overlap with this region, potentially



An Empirical Evaluation of PTE Coalescing

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 11.321 6.357 11.335 10.928 3.389 6.821 6.257 3.493 3.491 6.801 6.088 3.411 3.400
L2 DTLB hits 3.311 3.859 3.285 5.376 3.293 1.512 2.267 3.312 3.307 1.322 2.043 2.948 2.938
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 1.866 0.000 0.000 2.458 0.000 0.000 2.401 2.402 0.000 0.000 2.215 2.210
L2 DTLB coalesced hits 0.585 0.097 0.001 4.870 0.241 0.000 2.240 0.892 0.883 0.000 1.920 0.620 0.620
L2 DTLB 4 KB hits 2.727 1.896 3.284 0.506 0.593 1.512 0.027 0.019 0.023 1.322 0.123 0.113 0.108
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 48.358 0.012 0.004 74.662 0.009 0.003 72.489 72.613 0.013 0.004 75.133 75.217
L2 DTLB coalesced hits (%) 17.658 2.509 0.037 90.590 7.320 0.000 98.802 26.929 26.697 0.000 93.989 21.020 21.106
L2 DTLB 4 KB hits (%) 82.342 49.134 99.951 9.406 18.018 99.991 1.195 0.582 0.690 99.987 6.006 3.847 3.676
L2 DTLB misses 8.010 2.498 8.049 5.552 0.097 5.309 3.991 0.181 0.184 5.479 4.045 0.463 0.462
L2 DTLB 1 GB misses 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.000 0.257 0.000 0.000 0.029 0.000 0.000 0.062 0.064 0.000 0.000 0.274 0.273
L2 DTLB coalesced misses 0.217 0.091 0.001 5.379 0.012 0.000 3.947 0.077 0.078 0.000 3.985 0.127 0.126
L2 DTLB 4 KB misses 7.792 2.150 8.048 0.173 0.056 5.309 0.043 0.042 0.042 5.479 0.060 0.062 0.062
L2 DTLB 1 GB misses (%) 0.001 0.000 0.001 0.001 0.041 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 0.001 10.273 0.003 0.004 29.975 0.003 0.004 34.326 34.647 0.005 0.005 59.176 59.188
L2 DTLB coalesced misses (%) 2.712 3.646 0.015 96.875 12.456 0.000 98.908 42.425 42.449 0.000 98.513 27.345 27.295
L2 DTLB 4 KB misses (%) 97.287 86.081 99.981 3.120 57.528 99.997 1.088 23.247 22.902 99.995 1.482 13.479 13.517
L1 ITLB misses 0.050 0.001 0.023 0.023 0.023 0.005 0.005 0.006 0.006 0.000 0.000 0.000 0.000
L2 ITLB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 ITLB misses 0.050 0.001 0.023 0.023 0.023 0.005 0.005 0.006 0.006 0.000 0.000 0.000 0.000
Unhalted clock cycles 1.281 1.162 1.263 1.254 1.137 1.113 1.106 1.000 1.000 1.374 1.385 1.136 1.137

Table 6: BlockSVM

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 0.077 0.016 0.189 0.085 0.026 0.297 0.091 0.034 0.034 0.439 0.091 0.043 0.042
L2 DTLB hits 0.070 0.015 0.171 0.079 0.024 0.276 0.084 0.030 0.030 0.404 0.081 0.036 0.035
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.001 0.001 0.000 0.000 0.002 0.002
L2 DTLB coalesced hits 0.005 0.002 0.002 0.060 0.011 0.000 0.062 0.015 0.015 0.000 0.048 0.009 0.009
L2 DTLB 4 KB hits 0.064 0.012 0.168 0.019 0.011 0.276 0.023 0.014 0.014 0.404 0.033 0.026 0.025
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 9.100 0.171 0.339 8.471 0.094 0.292 3.640 3.621 0.059 0.272 4.291 4.449
L2 DTLB coalesced hits (%) 7.443 13.790 1.304 75.827 45.077 0.004 73.016 49.493 49.175 0.001 58.801 24.809 25.495
L2 DTLB 4 KB hits (%) 92.557 77.110 98.525 23.834 46.453 99.902 26.692 46.867 47.204 99.940 40.926 70.900 70.056
L2 DTLB misses 0.007 0.001 0.018 0.006 0.002 0.021 0.007 0.004 0.004 0.035 0.010 0.007 0.007
L2 DTLB 1 GB misses 0.000 0.000 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.000 0.000 0.004 0.001 0.000 0.007 0.001 0.001 0.001 0.000 0.000 0.000 0.000
L2 DTLB coalesced misses 0.000 0.000 0.000 0.002 0.000 0.000 0.003 0.001 0.001 0.000 0.002 0.001 0.001
L2 DTLB 4 KB misses 0.007 0.000 0.014 0.002 0.001 0.012 0.002 0.002 0.002 0.035 0.008 0.006 0.006
L2 DTLB 1 GB misses (%) 3.939 16.216 3.178 9.976 21.191 8.198 17.145 27.136 25.982 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 0.962 6.724 20.574 21.811 20.445 33.834 18.450 12.819 13.173 0.108 0.282 1.171 1.374
L2 DTLB coalesced misses (%) 2.011 2.768 0.456 39.069 13.344 0.031 39.396 19.625 19.745 0.011 21.036 10.048 9.817
L2 DTLB 4 KB misses (%) 93.087 74.293 75.792 29.144 45.020 57.938 25.009 40.420 41.100 99.882 78.682 88.781 88.808
L1 ITLB misses 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 ITLB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 ITLB misses 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Unhalted clock cycles 0.508 0.500 0.927 0.924 0.925 1.002 1.004 1.000 1.002 0.930 0.929 0.932 0.930

Table 7: Freqmine

reducing the use of superpages. (This issue is not relevant to our
Linux experiments since the malloc included with glibc does not
make use of MADV_FREE.)

5.1 Data TLB
In general, reservations have a strong impact on the performance
of the data TLB. We first focus on applications running natively on
a FreeBSD system with a 5900X processor, and then compare the
behavior of identical binaries running both natively on Linux and
under Linux emulation on FreeBSD.

5.1.1 Clang (SQLite). Enabling reservations reduces the number
of L1 DTLB misses from 2.628 to 1.916. This closely tracks the
decrease in the number of L2 hits (2.476 to 1.836). The breakdown
of L2 hits by page size suggests that this is mostly explained by
PTE Coalescing. Without reservations, virtually all L2 hits involve
4 KB pages; with reservations explicilty creating physical contiguity,
nearly three quarters of them make use of 16 KB coalesced pages.
L2 misses also decrease substantially, and exhibit a similar shift
towards the use of coalesced pages.

Turning on superpages actually results in a smaller decrease in
L1 DTLB misses than does enabling reservations. However, this is



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 7.295 7.087 7.781 5.629 5.550 8.039 6.753 6.746 6.794 5.960 4.705 4.694 4.747
L2 DTLB hits 7.216 7.009 7.694 5.553 5.474 7.951 6.672 6.665 6.714 5.860 4.612 4.603 4.654
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 0.006 0.000 0.000 0.048 0.000 0.000 0.002 0.002 0.000 0.000 0.007 0.007
L2 DTLB coalesced hits 0.364 0.440 0.048 1.338 1.266 0.000 1.130 1.192 1.167 0.006 0.548 0.539 0.542
L2 DTLB 4 KB hits 6.853 6.563 7.646 4.215 4.160 7.951 5.542 5.472 5.546 5.854 4.064 4.057 4.105
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 0.086 0.004 0.006 0.880 0.005 0.005 0.024 0.024 0.005 0.005 0.145 0.152
L2 DTLB coalesced hits (%) 5.042 6.281 0.620 24.087 23.126 0.001 16.928 17.882 17.377 0.106 11.875 11.716 11.645
L2 DTLB 4 KB hits (%) 94.958 93.634 99.375 75.907 75.994 99.995 83.066 82.094 82.599 99.890 88.119 88.139 88.203
L2 DTLB misses 0.078 0.078 0.087 0.076 0.076 0.088 0.081 0.081 0.079 0.100 0.093 0.091 0.093
L2 DTLB 1 GB misses 0.005 0.005 0.010 0.009 0.009 0.008 0.007 0.007 0.007 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.016 0.015 0.011 0.009 0.009 0.008 0.009 0.009 0.008 0.000 0.000 0.000 0.000
L2 DTLB coalesced misses 0.003 0.003 0.000 0.004 0.004 0.000 0.004 0.004 0.004 0.000 0.003 0.003 0.004
L2 DTLB 4 KB misses 0.053 0.054 0.066 0.055 0.055 0.072 0.061 0.060 0.060 0.100 0.089 0.087 0.090
L2 DTLB 1 GB misses (%) 7.000 6.920 11.517 11.347 11.213 9.000 8.881 9.070 8.961 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 20.884 19.779 12.678 11.196 11.389 9.043 11.005 10.709 9.872 0.020 0.029 0.064 0.064
L2 DTLB coalesced misses (%) 3.728 3.612 0.076 5.022 4.865 0.015 5.057 5.189 5.261 0.012 3.622 3.852 3.968
L2 DTLB 4 KB misses (%) 68.389 69.688 75.729 72.435 72.533 81.942 75.057 75.032 75.906 99.968 96.349 96.084 95.968
L1 ITLB misses 0.670 0.408 0.691 0.044 0.043 0.676 0.133 0.151 0.147 0.561 0.219 0.228 0.232
L2 ITLB hits 0.664 0.404 0.685 0.042 0.041 0.672 0.131 0.149 0.145 0.558 0.217 0.226 0.230
L2 ITLB misses 0.006 0.004 0.006 0.002 0.002 0.004 0.002 0.002 0.002 0.003 0.002 0.002 0.002
Unhalted clock cycles 0.720 0.720 1.088 1.087 1.083 1.000 0.999 1.000 1.001 1.364 1.357 1.357 1.358

Table 8: Node.js

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 3.654 0.836 3.900 2.080 0.800 3.853 2.073 0.831 0.767 4.511 2.197 1.199 1.106
L2 DTLB hits 3.373 0.819 3.589 1.904 0.773 3.562 1.913 0.806 0.742 3.938 1.789 1.008 0.966
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 0.475 0.000 0.000 0.406 0.000 0.000 0.392 0.380 0.000 0.000 0.485 0.493
L2 DTLB coalesced hits 0.235 0.037 0.031 1.529 0.217 0.012 1.543 0.267 0.218 0.001 1.157 0.221 0.197
L2 DTLB 4 KB hits 3.137 0.307 3.558 0.375 0.150 3.550 0.370 0.147 0.144 3.937 0.632 0.302 0.276
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 57.948 0.002 0.004 52.500 0.002 0.005 48.630 51.204 0.003 0.005 48.107 51.052
L2 DTLB coalesced hits (%) 6.973 4.559 0.867 80.294 28.124 0.342 80.673 33.102 29.391 0.019 64.658 21.954 20.405
L2 DTLB 4 KB hits (%) 93.027 37.493 99.131 19.701 19.376 99.656 19.321 18.268 19.406 99.978 35.336 29.938 28.543
L2 DTLB misses 0.281 0.017 0.311 0.176 0.027 0.291 0.160 0.025 0.025 0.573 0.407 0.191 0.140
L2 DTLB 1 GB misses 0.023 0.014 0.013 0.013 0.010 0.026 0.021 0.017 0.016 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.001 0.001 0.018 0.015 0.012 0.001 0.001 0.002 0.003 0.000 0.000 0.005 0.006
L2 DTLB coalesced misses 0.019 0.000 0.001 0.132 0.002 0.000 0.121 0.001 0.001 0.000 0.180 0.004 0.004
L2 DTLB 4 KB misses 0.237 0.001 0.279 0.016 0.003 0.264 0.017 0.004 0.005 0.573 0.227 0.182 0.130
L2 DTLB 1 GB misses (%) 8.353 86.306 4.116 7.103 36.503 8.893 13.346 69.315 66.175 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 0.438 8.682 5.701 8.726 45.610 0.362 0.623 9.899 10.243 0.022 0.031 2.699 4.082
L2 DTLB coalesced misses (%) 6.923 0.283 0.244 75.181 5.830 0.125 75.665 3.859 3.534 0.018 44.177 2.169 2.825
L2 DTLB 4 KB misses (%) 84.285 4.729 89.938 8.990 12.057 90.620 10.366 16.928 20.047 99.960 55.793 95.132 93.093
L1 ITLB misses 1.550 0.069 1.748 0.800 0.083 1.544 0.614 0.040 0.041 1.742 0.584 0.069 0.028
L2 ITLB hits 1.241 0.068 1.399 0.676 0.082 1.214 0.506 0.040 0.040 1.346 0.492 0.068 0.028
L2 ITLB misses 0.309 0.001 0.349 0.124 0.001 0.329 0.108 0.000 0.000 0.396 0.093 0.001 0.000
Unhalted clock cycles 1.020 0.976 1.022 0.996 0.967 1.064 1.028 1.000 1.003 1.367 1.344 1.304 1.292

Table 9: QEMU

mostly an artifact of the interaction between the FreeBSD malloc
package’s extensive use of MADV_FREE and Clang’s memory alloca-
tion pattern; disabling MADV_FREE makes superpages much more
effective. Under this configuration, L2 hits use 2 MB pages over
20% of the time, and use 16 KB pages almost half of the time. This
establishes that although to some extent 2 MB superpages supplant
coalesced superpages, the latter still play an important role in im-
proving DTLB hit rates. Here, there are very few L2 DTLB misses,
and they tend to make use of larger page sizes.

For Clang, Linux’s buddy allocator is more effective at creating
the physical contiguity needed to coalesce PTEs than FreeBSD

without reservations. However, with reservations enabled, FreeBSD
dominates Linux in this regard, producing 2.312 coalesced L2 hits to
Linux’s 0.516, and a similar pattern holds for L2 misses. This allows
FreeBSD to take the lead in L1 misses as well. Finally, FreeBSD’s
superpage promotion system is much more effective at reducing
L1 misses than Linux’s THP.

5.1.2 GraphChi. Turning reservations on has an even stronger
impact on L1 DTLB misses for GraphChi, dropping them from
18.559 to 16.057, and the shift from 4 KB L2 hits to 16 KB L2 hits
is more pronounced, with nearly 90% of L2 hits being coalesced



An Empirical Evaluation of PTE Coalescing

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 27.330 4.486 26.041 23.162 4.781 30.760 27.093 5.731 5.667 30.745 27.393 6.035 5.908
L2 DTLB hits 6.167 4.300 4.633 5.048 4.510 5.957 6.248 5.479 5.417 5.144 5.010 5.410 5.340
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 3.907 0.002 0.002 4.179 0.002 0.002 4.881 4.876 0.002 0.002 5.056 4.968
L2 DTLB coalesced hits 0.005 0.000 0.000 4.446 0.000 0.000 5.462 0.263 0.295 0.000 4.235 0.144 0.161
L2 DTLB 4 KB hits 6.161 0.393 4.632 0.601 0.331 5.955 0.783 0.334 0.246 5.141 0.773 0.210 0.211
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 90.871 0.035 0.030 92.666 0.030 0.028 89.100 90.015 0.043 0.037 93.456 93.031
L2 DTLB coalesced hits (%) 0.085 0.000 0.001 88.070 0.000 0.000 87.432 4.800 5.448 0.000 84.532 2.669 3.011
L2 DTLB 4 KB hits (%) 99.915 9.129 99.964 11.900 7.333 99.970 12.540 6.100 4.537 99.957 15.431 3.876 3.957
L2 DTLB misses 21.164 0.186 21.408 18.114 0.271 24.803 20.845 0.252 0.250 25.602 22.383 0.626 0.568
L2 DTLB 1 GB misses 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.000 0.129 0.001 0.001 0.204 0.001 0.001 0.221 0.222 0.001 0.002 0.513 0.470
L2 DTLB coalesced misses 0.002 0.000 0.014 17.884 0.001 0.000 20.786 0.024 0.022 0.000 22.364 0.106 0.090
L2 DTLB 4 KB misses 21.162 0.057 21.393 0.230 0.066 24.802 0.058 0.006 0.006 25.600 0.017 0.008 0.007
L2 DTLB 1 GB misses (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 0.000 69.146 0.005 0.005 75.348 0.004 0.005 87.844 88.693 0.006 0.007 81.914 82.814
L2 DTLB coalesced misses (%) 0.010 0.000 0.064 98.726 0.481 0.000 99.716 9.646 8.752 0.000 99.917 16.887 15.868
L2 DTLB 4 KB misses (%) 99.990 30.854 99.931 1.269 24.171 99.996 0.279 2.510 2.554 99.994 0.076 1.199 1.318
L1 ITLB misses 0.003 0.000 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000
L2 ITLB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 ITLB misses 0.003 0.000 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000
Unhalted clock cycles 0.843 0.759 1.191 1.185 1.071 1.124 1.116 1.000 1.001 1.336 1.367 1.145 1.146

Table 10: XSBench

Linux binary, 5900X
Linux FreeBSD FreeBSD binary, 5900X FreeBSD binary, 2700XCounter

nothp thp noresv reserv super noresv reserv super nomdv noresv reserv super nomdv
L1 DTLB misses 5.471 2.658 5.391 5.218 2.248 3.679 3.559 1.666 1.645 3.707 3.536 1.602 1.600
L2 DTLB hits 0.903 1.807 0.850 1.631 2.216 0.692 1.236 1.626 1.605 0.655 1.202 1.572 1.571
L2 DTLB 1 GB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits 0.000 1.451 0.000 0.000 2.008 0.000 0.000 1.285 1.280 0.000 0.000 1.294 1.294
L2 DTLB coalesced hits 0.123 0.000 0.000 1.505 0.002 0.000 1.087 0.215 0.217 0.000 0.974 0.178 0.180
L2 DTLB 4 KB hits 0.781 0.355 0.849 0.126 0.205 0.691 0.149 0.126 0.108 0.655 0.228 0.100 0.097
L2 DTLB 1 GB hits (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 DTLB 2 MB hits (%) 0.000 80.330 0.031 0.018 90.635 0.026 0.017 79.036 79.758 0.026 0.011 82.338 82.361
L2 DTLB coalesced hits (%) 13.575 0.016 0.016 92.239 0.101 0.000 87.910 13.215 13.527 0.000 81.053 11.323 11.436
L2 DTLB 4 KB hits (%) 86.425 19.654 99.953 7.743 9.264 99.974 12.073 7.748 6.716 99.974 18.935 6.339 6.203
L2 DTLB misses 4.567 0.852 4.541 3.586 0.032 2.987 2.322 0.041 0.040 3.052 2.334 0.030 0.029
L2 DTLB 1 GB misses 0.047 0.019 0.008 0.002 0.004 0.031 0.030 0.029 0.028 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses 0.001 0.016 0.048 0.045 0.017 0.012 0.012 0.010 0.010 0.000 0.000 0.001 0.000
L2 DTLB coalesced misses 0.000 0.410 0.001 3.376 0.001 0.000 2.274 0.000 0.000 0.000 2.300 0.002 0.001
L2 DTLB 4 KB misses 4.519 0.406 4.484 0.164 0.011 2.944 0.007 0.001 0.002 3.052 0.034 0.028 0.027
L2 DTLB 1 GB misses (%) 1.027 2.260 0.186 0.042 12.813 1.030 1.294 70.826 70.609 0.000 0.000 0.000 0.000
L2 DTLB 2 MB misses (%) 0.033 1.878 1.048 1.262 52.151 0.407 0.513 24.563 24.479 0.013 0.019 2.558 1.622
L2 DTLB coalesced misses (%) 0.000 48.185 0.024 94.136 1.956 0.000 97.897 1.009 0.921 0.000 98.538 6.617 4.851
L2 DTLB 4 KB misses (%) 98.940 47.677 98.742 4.561 33.081 98.564 0.295 3.602 3.991 99.987 1.444 90.825 93.527
L1 ITLB misses 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.004 0.003 0.003
L2 ITLB hits 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.003 0.003
L2 ITLB misses 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Unhalted clock cycles 0.962 0.813 0.865 0.854 0.763 1.076 1.078 1.000 0.983 1.263 1.269 1.142 1.142

Table 11: Canneal

after reservations were enabled. Almost 80% of L2 misses can be
resolved by creating coalesced entries that go on to create more L1
and L2 hits in the future.

Superpages result in significantly improved TLB performance
for GraphChi, with L1 DTLB misses dropping down to 11.105.
(MADV_FREE does not have a major effect here.) In this case, 72.469%
of L2 hits are handled by 2 MB entries, while 17.712% use 16 KB
entries. The majority of L2 misses result in the creation of coalesced
entries in the TLB, again indicating that PTE Coalescing can still
provide benefits when 2 MB superpages are also used.

Reservations again outperform Linux with THP turned off,
primarily due to their ability to produce many more coalesced
hits. With THP on, however, Linux achieves much better TLB
performance than FreeBSD does, with 4.431 L1 misses versus
8.207 on FreeBSD with superpages. In this case, Linux produces a
much greater percentage of L2 DTLB hits (92.846%) than FreeBSD
(62.445%).

5.1.3 BlockSVM. Enabling reservations without superpages re-
sults in a modest improvement in BlockSVM’s DTLB performance.
L1 misses fall from 6.821 to 6.257, and L2 misses fall from 5.309 to



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

3.991. In this case, the ability of coalesced entries to replace 4 KB
entries is very apparent. The entries used by L2 hits and misses go
from being almost entirely 4 KB in size to nearly all 16 KB pages.

Switching on superpages has a greater impact than just enabling
reservations. L1misses are reduced to 3.493, with MADV_FREE having
almost no effect. L2 misses are almost eliminated entirely, indicating
that superpages allow BlockSVM’s working set tomostly be covered
by the TLB. Around three quarters of L2 hits are handled by 2 MB
entries, with the rest making use of 16 KB entries.

Generally, the story is similar when comparing Linux and
FreeBSD. In terms of L1 misses, FreeBSD without reservations
(11.335) performs slightly worse than Linux without THP (11.321)
due to differences in the buddy allocator’s ability to create coinci-
dental contiguity, but FreeBSD with reservations on outperforms
both (10.928). FreeBSD’s superpage promotion is more effective at
eliminating L1 misses than THP, but both have a significant impact.
Again, FreeBSD is able to reduce L2 misses to a negligible amount.

5.1.4 Freqmine. Freqmine’s working set is smaller than that of
the other applications, and it hence incurrs very few L1 DTLB
misses. Nevertheless, enabling reservations decreases the count by
nearly two thirds, from 0.297 to 0.091. Almost all of these misses
subsequently hit in the L2, with roughly three quarters of these hits
resulting from coalesced entries.

The use of 2 MB superpages again reduces L1 misses by two
thirds to 0.034. L2 hits are handled by both 4 KB and 16 KB entries
at roughly the same rate, and the relative lack of 2 MB L2 hits
indicates that the 2 MB entries needed to address the application’s
working set are contained almost entirely in the L1 TLB.

For the Linux binary, native Linux outperforms FreeBSD (with
reservations on or off) in terms of L1misses, but FreeBSD is nonethe-
less able to create more coalesced L2 hits than Linux. In addi-
tion, THP is slightly more successful at eliminating L1 misses than
FreeBSD superpages. It bears repeating that the differences here
are quite small since Freqmine makes very good use of the TLB.

5.1.5 Node.js. Reservations decrease the number of L1 DTLB
misses from 8.039 to 6.753. Since our workload has a relatively
small working set, almost all of these L1 misses end up hitting in
the L2. FreeBSD does not achieve a particularly high proportion of
coalesced L2 hits (16.928%) in this case, but PTE Coalescing still
allows the L1 TLB to cover more of the address space and thus
miss less often.

Turning on superpages does not result in a noticeable difference
in DTLB performance for Node.js. This is likely because Node.js
tends to manage anonymous memory in blocks that are smaller
than 2 MB in size. FreeBSD still allocates reservations for these
mappings since they are heap memory, allowing PTE Coalescing
to occur even though superpage promotions do not. Although this
has the potential to cause physical memory fragmentation, if the
system comes under memory pressure these reservations can be
easily broken to reclaim contiguity.

A similar pattern appears when comparing DTLB performance
with the Linux binary. The value of FreeBSD’s reservation system
is clearly apparent; Linux’s THP is unable to achieve any perfor-
mance benefit due to Node.js’s memory management behavior, but
reservations are able to reduce L1 DTLB misses from 7.781 to 5.629

by creating the contiguity that is necessary for PTE Coalescing
much more effectively than Linux can.

5.1.6 QEMU. QEMU’s DTLB performance resembles that of Clang.
Turning on reservations drops the number of L1 misses from 3.853
to 2.073, which mirrors the drop in L2 hits from 3.562 to 1.913. L2
hits shift from being nearly 100% 4 KB to being around 80% 16 KB.

2 MB superpages further reduce L1 misses to 0.831, and disabling
MADV_FREE drops the count to 0.767. In either case, L2 misses are
eliminated almost entirely. L2 hits are handled mostly by 2 MB
entries, with coalesced and 4 KB entries taking care of the rest.

Compared to Linuxwithout THP, FreeBSD reservations are again
very effective at creating the contiguity needed for PTE Coalescing.
Superpage promotion on FreeBSD outperforms THP by a small
amount (0.800 versus 0.836).

5.1.7 XSBench. With reservations disabled, XSBench makes ex-
ceptionally poor use of the data TLB. Enabling them reduces the
L1 DTLB miss rate from 30.760 to 27.093 and the L2 DTLB miss
rate from 24.803 to 20.845, with the vast majority of L2 hits and
misses making use of coalesced mappings. This indicates that the
coalescing size is simply not large enough to allow either the L1 or
L2 DTLB to cover the application’s working set.

Activating 2 MB superpages has a massive impact on DTLB
performance, with the L1 miss rate dropping all the way down to
5.731. Nearly 90% of L2 DTLB hits and misses use 2 MB mappings
in this case. Because XSBench exhibits good superpage-granularity
locality, the L1 and L2 DTLB are able to mostly cover its working
set with superpages enabled.

FreeBSD reservations again enable more coalescing than Linux
with THP disabled does, but with THP on, Linux’s more aggressive
superpage creation policy slightly outperforms FreeBSD’s approach
(4.486 L1 misses versus 4.781).

5.1.8 Canneal. Enabling reservations has a fairly small impact on
Canneal’s L1 DTLB performance, with the miss rate dropping from
3.679 to 3.559, but the L2 hit rate nearly doubles from 0.692 to 1.236.

Turning on 2 MB superpages cuts the L1 DTLB miss rate by over
50%, to 1.666 and allows the application’s working set to fit within
the L1 and L2 TLB, nearly eliminating L2 misses entirely. Almost
80% of L2 hits make use of 2 MB superpage mappings.

The Linux binary for Canneal performs the best on FreeBSDwith
superpages enabled, with a L1 DTLB miss rate of 2.248 compared
to 2.658 on Linux with THP. Again, FreeBSD’s reservation-based
allocation is able to create many more coalesced superpages than
Linux’s buddy allocator.

5.2 Instruction TLB
PTE Coalescing has a noticeable impact on applications which use
a large number of code pages. GraphChi, BlockSVM, Freqmine,
XSBench, and Canneal do not, and hence are not addressed below.
We do not explicitly summarize the performance of Linux’s THP
here, as THP does not by default affect code pages.

It is important to note that all of our applications on FreeBSD
were compiled with maxpagesize equal to 2 MB. If this were not
the case, the misalignment explained in Section 2.3 would prevent
both PTE Coalescing and superpage promotion from functioning
at all.



An Empirical Evaluation of PTE Coalescing

5.2.1 Clang (SQLite). Enabling reservations reduces L1 ITLB
misses by over 50%, from 3.279 to 1.578, while L2 ITLB misses are
reduced nearly to zero. Interestingly, enabling superpages has little
impact beyond what PTE Coalescing is already able to accomplish
given the contiguity created by reservations.

5.2.2 Node.js. Turning reservations on cuts L1 ITLB misses from
0.676 to 0.133, a reduction of over 80%. There are very few L2
misses in ether case, suggesting that the code pages used (those of
Node.js itself as well as any code that is just-in-time compiled) are
well-covered by the L1 ITLB. Superpages actually increase the L1
miss count slightly, though this is somewhat mitigated by disabling
MADV_FREE.

5.2.3 QEMU. L1 ITLB misses drop from 1.544 to 0.614 when
FreeBSD’s reservations are activated. In contrast to the prior two
applications, 2 MB code superpages have a strong impact on ITLB
performance for QEMU, reducing L1 misses to 0.040 and essentially
eliminating L2 misses.

5.3 Overall Performance
We use unhalted userspace clock cycles to measure performance
in a way that is independent of any time needed for I/O. Node.js is
not mentioned below since PTE Coalescing and superpages have
very little impact on its performance in terms of cycles.

Although FreeBSD’s Linux emulation layer may impose a
performance penalty, prior work [40] suggests this overhead is
small enough that a fair comparison can still be made between the
FreeBSD and Linux kernels.

It is important to note that on an operating system which
employs reservation-based allocation (like FreeBSD), the perfor-
mance benefits of PTE Coalescing come at zero cost; no kernel
modifications are required. Reservation based allocation has been
shown [40] to be a competitive approach to superpage creation
with a reasonable overhead.

5.3.1 Clang (SQLite). Enabling reservations reduces the unhalted
cycle count by 1.5%, and turning on superpages with MADV_FREE
increases this figure to 2.1%. FreeBSDwith reservations enabled out-
performs Linux with THP off by 1.5%, and FreeBSDwith superpages
takes 2.8% fewer cycles than Linux with THP on.

5.3.2 GraphChi. Reservations reduce the cycles needed by 1.1%,
and 2 MB superpages offer a reduction of 6.7%, with disabling
MADV_FREE leading to a negligible decline in performance. Linux
substantially outperforms FreeBSD’s Linux emulation, with THP
taking 27.9% fewer cycles than FreeBSD superpages.

5.3.3 BlockSVM. Although reservations have very little impact on
performance in terms of cycles (around 0.6%), superpages have a
large impact, reducing the unhalted cycle count by 10.2%. For the
Linux binary, FreeBSD with superpages offers the best performance
overall.

5.3.4 Freqmine. Performance for Freqmine does not vary signifi-
cantly based on the selected reservation or superpage policy. How-
ever, Linux achieves a significant overall performance advantage
over FreeBSD. We believe that this can be attributed to unusually
poor instruction cache behavior under FreeBSD that is unrelated

to TLB performance. For example, comparing Linux with THP off
to FreeBSD’s Linux emulation with reservations disabled, FreeBSD
incurs nearly 4.6 times as many instruction cache stalls. The same
relationship holds for the native FreeBSD binary as well. Because
the Freqmine executable is small, FreeBSD does not back it with
a reservation, and its code pages are hence not guaranteed to be
physically contiguous, which may lead to poor cache utilization.

5.3.5 QEMU. Reservations speed up QEMU by 3.4%, and super-
pages increase this boost to 6.0%, with MADV_FREE not having a
significant effect. Under FreeBSD’s Linux emulation, FreeBSD with
reservations outperforms Linux with THP off by 2.4%, and FreeBSD
with superpages outpaces Linux with THP by 0.9%.

5.3.6 XSBench. The coalescing enabled by reservations speeds up
by XSBench by a small amount, while superpages result in a 7.1%
reduction in clock cycles. Linux achieves a notable performance
advantage over FreeBSD, and just as in the case of Freqmine above,
we believe that this is explained by poor instruction cache behavior.
FreeBSD with reservations disabled encounters 1.5 times as many
instruction cache stalls as does Linux with THP off.

5.3.7 Canneal. The benchmark’s performance is not significantly
impacted by enabling reservations, with the slight increase in un-
halted clock cycles from 1.076 to 1.078 being within the variance of
the experiment. Superpages do have an impact, however, reducing
the cycle count by 7.1%. Running the Linux binary on FreeBSD
with superpages on is actually the most performant configuration
we examined, outperforming Linux with THP on by 6.2% and the
FreeBSD native binary with superpages by 23.7%.

5.4 Coalescing Region Size
The older Ryzen 2700X’s Zen+ microarchitecture coalesces 8 PTEs
together at a time to form 32 KB pages instead of the 16 KB pages
created by the Ryzen 5900X.

For the data TLB, 32 KB coalescing generally results in a greater
percentage decrease in L1 misses after reservations are enabled. For
example, enabling reservations causes Node.js’s L1 DTLB misses to
drop by 21.1% (from 5.960 to 4.705) on the 2700X but only by 16.0%
(from 8.039 to 6.753) on the 5900X.

This pattern reverses for the instruction TLB, at least for the
large applications that cannot be covered entirely by the L1. Again
using Node.js as an example, L1 misses decrease by 60.9% (from
0.561 to 0.219) on the 2700X and by 80.25% (from 0.676 to 0.133) on
the 5900X.

A potential explanation for this phenomenon is that code pages
in large applications may be sparsely accessed when certain code
paths are left unused throughout a program’s entire execution,
while anonymous memory tends to all be touched at least once. In
the former case, a smaller coalescing size makes it more likely that
all of the constituent PTEs will be accessed, allowing them to be
coalesced together; in the latter case, larger entries allow the TLB
to cover a larger amount of memory.

It is also worth mentioning that, in contrast, 16 KB coalescing
clearly allows for a greater proportion of L2 DTLB hits to be han-
dled using coalesced entries than 32 KB coalescing. For instance,
with reservations enabled, 74.352% of Clang’s L2 hits make use of
coalesced entries on the 5900X, versus only 58.551% on the 2700X.



Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

5.5 Discussion
To summarize, on the data side, enabling reservations generally
reduces the number of L1 TLB misses by creating more of the
contiguity that is necessary for PTE Coalescing to occur. In tandem,
the proportion of L2 TLB hits that use coalesced pages usually
increases substantially. Turning on superpages has the potential to
improve L1 TLB performance further, but the feature’s effectiveness
varies from application to application and in many cases the vast
majority of the performance improvement that superpages bring
can be achieved using only reservations and PTE Coalescing.

The Linux buddy allocator does a better job generating coinci-
dental contiguity than does FreeBSD with reservations disabled,
but turning on reservations allows FreeBSD to far surpass Linux in
terms of contiguity production.

For instructions, when considering applications whose code can-
not be covered by the L1 ITLB using 4 KB entries, a similar pattern
as for data holds. With the exception of QEMU, PTE Coalescing
and reservations are able to achieve most of the ITLB performance
benefits of 2 MB superpages.

In general, the improvements in unhalted clock cycles offered by
reservations and coalescing are modest, with superpages tending
to make a larger difference.

Finally, comparing results from the 2700X and 5900X indicates
that 16 KB coalescing results in the creation of more coalesced
entries, but that on the data side larger 32 KB coalesced pages may
do more to alleviate L1 TLB misses because they allow the TLB to
cover more of an application’s working set.

6 RELATEDWORK
In contrast to FreeBSD’s current reservation-based allocator,
Navarro et al. demonstrated a multi-level reservation-based
allocator that supported the automatic creation of both medium
and large superpages (64 KB, 512 KB, and 4 MB) on a DEC Alpha
processor [30]. However, most of the subsequent work on the
operating system-side of transparent superpage support has
focused on the huge page sizes that are supported by x86-64
processors, frequently seeking to address the issue of memory
fragmentation [21, 26, 31, 32, 40]. Today, in the absence of
operating system support for medium-sized superpages, some
ARMv8-A-based systems (such as Mac computers with Apple
silicon) are configured with a larger base page size of 16 or even
64 KB.

Other techniques for creating physical contiguity exist that do
not rely on reservation-style allocation. One example is Translation
Ranger [37], which introduces the concept of an “anchor point,”
or a paired virtual and physical page, around which it attempts to
build contiguity. It achieves this by swapping interfering physical
pages out of the way in order to minimize the number of physically
contiguous regions that are needed to cover each virtual address
range.

Another example of hardware support for explicit medium-sized
superpage creation is the Svnapot extension to the RISC-V architec-
ture [5]. In its currently standardized form, the extension allows for
64 KB superpages to be created analogously to ARM’s Contiguous
bit. However, the scheme is more general than ARM’s Contiguous

bit, allowing for different page sizes to be specified in the number
of trailing zeros in each PTE’s physical page frame number.

This encoding technique is also used by the Tailored Page Sizes
(TPS) mechanism proposed by Guvenilir et al. [23]. TPS goes fur-
ther than the RISC-V approach by mandating support for aligned
superpages with arbitrary power-of-two sizes. It also introduces
the concept of “alias” PTEs, which act as pointers to a “true” su-
perpage PTE and do not need to contain all of the attributes of the
superpage.

Similar to our investigation into the effects of PTE Coalescing
on the instruction TLB, Zhou et al. [39] investigate the impact of
automatic support for superpages on improving the performance of
virtual-to-physical address translation when fetching instructions
within large executables.

Most of the work on coalesced TLBs since Pham et al.’s original
CoLT paper [35] has focused on relaxing the contiguity requirement.
For example, Pham et al. extend CoLT to exploit so-called “clustered
spatial locality” by mapping clusters of virtual pages to clusters of
physical pages without a strict contiguity requirement [34]. Du et al.
propose gap-tolerant sequential mapping, which allows superpages
to be formed even in the presence of “retired” physical pages, i.e.,
physical pages that are no longer allocated because of a hardware
failure [20]. Park et al. propose Hybrid TLB Coalescing, which
can dynamically change sizes for translation coalescing in order
to adapt to the currently available physical contiguity, and so the
operating system does not need to provide any particular allocation
size [33].

7 CONCLUSIONS
This paper has investigated the behavior of the PTE Coalescing
feature of modern AMD x86-64 microarchitectures. PTE Coalescing
allows MMUs to store four or eight (depending on the generation)
page table entries which map aligned and contiguous physical
memory with identical attributes using only a single TLB entry,
essentially offering transparent medium-sized superpage support.
Because official documentation about the feature from AMD is
limited, we developed a custom trace-driven microbenchmark in
order to develop a full specification of its behavior. We then exam-
ined the extent to which FreeBSD’s reservation system can be used
to explicitly create alignment and contiguity beyond what arises
coincidentally due to the use of the buddy allocators, and com-
pared the effects of reservations to multiple techniques for creating
2 MB superpages. This was accomplished by benchmarking a vari-
ety of applications using different TLB-related CPU performance
counters.

At a high level, reservations and PTE Coalescing combine to form
an effective technique for improving TLB performance through
medium-sized superpage creation. Reservations do a much bet-
ter job at creating physically contiguous memory than either the
FreeBSD or Linux buddy allocators are able to do coincidentally.
In some cases, when reservations are activated, PTE Coalescing is
able to provide most of the benefits of 2 MB superpages for both the
data and instruction TLBs at zero additional cost. Enabling reserva-
tions leads to modest but significant increases in overall application
performance, and in some cases 2 MB superpages can further speed
up applications. AMD’s decision to reduce the coalescing size from



An Empirical Evaluation of PTE Coalescing

32 KB to 16 KB on Zen 2 and later processors led to an increase in
the number of coalesced entries used by the TLB, at the cost of not
allowing each coalesced entry to cover as much memory.

A number of opportunities for further research into reservations,
PTE Coalescing, and related virtual memory techniques exist.

For example, the smallest reservation size that modern FreeBSD
systems create is 2 MB. As a consequence of this, if a file, executable,
or shared library is less than 2 MB in size, a reservation will not
be created to back it. On systems that support 16 KB or 32 KB
medium-sized superpages through PTE Coalescing, it may make
sense to additionally support smaller reservation sizes in order to
improve the feature’s effectiveness. (This approach could also be
used by operating systems which support explicit medium-sized
superpage creation with the ARMv8-A architecture’s Contiguous
bit.) The reservation-based allocator proposed by Navarro et al. [30]
implemented a multi-level reservation system that supported this
capability, but modern FreeBSD ships with a simplified version
which supports multiprocessor systems but only offers a single
reservation size.

Also, this paper has determined that all of the accessed bits
within a coalescing region must be set in order to create a coalesced
TLB entry. This presents the possibility of presetting the accessed
bit on the prefaulted mappings which are speculatively created
when a cluster of pages is brought into memory following a disk
I/O operation. Doing so would allow coalescing to occur on the first
access to the relevant virtual memory region instead of deferring it
until all of the relevant PTEs have been touched.

Finally, prior work like Quicksilver [40] has suggested modifying
FreeBSD’s superpage promotion policy to make it more aggressive
by reducing the number of PTEs within a 2 MB region that must
be valid in order to attempt a superpage promotion. Currently,
FreeBSD requires that all 512 constituent entries must exist, while
Quicksilver proposes cutting this threshold to 64. It is possible that
this change may need to be reconsidered in light of the existence
of PTE Coalescing, because the latter allows much of the TLB
performance benefit of 2 MB pages to be achieved before a 2 MB
region is actually promoted into a superpage.

REFERENCES
[1] 2016. React server-side rendering benchmark. https://www.npmjs.com/package/

react-ssr-benchmarks.
[2] 2019. Processor Programming Reference (PPR) for AMD Family 17h Models

01h,08h, Revision B2 Processors.
[3] 2020. Software Optimization Guide for AMD Family 19h Processors, Revision

3.00. https://www.amd.com/en/support/tech-docs/56665-software-optimization-
guide-for-amd-family-19h-processors-pub.

[4] 2021. Processor Programming Reference (PPR) for AMD Family 19h Model 21h,
Revision B0 Processors.

[5] 2021. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture.
[6] 2021. Software Optimization Guide for AMD Family 17h Processors, Revision

3.01. https://www.amd.com/en/support/tech-docs/software-optimization-guide-
for-amd-family-17h-processors.

[7] 2023. Arm Architecture Reference Manual for A-profile architecture.
[8] 2023. The FreeBSD Handbook: Linux Binary Compatibility. https://docs.freebsd.

org/en/books/handbook/linuxemu/.
[9] 2023. Node.js: an open-source, cross-platform JavaScript runtime environment.

https://nodejs.org.
[10] 2023. perf events. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.

git/tree/tools/perf/pmu-events/arch/x86.
[11] 2023. perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/index.php/Main_Page.
[12] 2023. pmcstat - configure processor sets. https://man.freebsd.org/cgi/man.cgi?

query=cpuset&sektion=1.

[13] 2023. pmcstat - performance measurementwith performance monitoring hard-
ware. https://man.freebsd.org/cgi/man.cgi?query=pmcstat&sektion=8.

[14] 2023. pmcstat events. https://cgit.freebsd.org/src/tree/lib/libpmc/pmu-events/
arch/x86.

[15] 2023. QEMU. https://www.qemu.org/.
[16] 2023. The SQLite Amalgamation. https://www.sqlite.org/amalgamation.html.
[17] 2023. taskset - set or retrieve a process’s CPU affinity. https://www.man7.org/

linux/man-pages/man1/taskset.1.html.
[18] 2023. V8. https://v8.dev.
[19] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (Toronto, Ontario, Canada) (PACT ’08). Association for
Computing Machinery, New York, NY, USA, 72–81. https://doi.org/10.1145/
1454115.1454128

[20] Y. Du, M. Zhou, B. R. Childers, and D. Mossénd R. Melhem. 2015. Supporting
superpages in non-contiguous physical memory. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). 223–234. https:
//doi.org/10.1109/HPCA.2015.7056035

[21] Mel Gorman and Patrick Healy. 2008. Supporting Superpage Allocation Without
Additional Hardware Support. In Proceedings of the 7th International Symposium
on Memory Management (Tucson, AZ, USA) (ISMM ’08). ACM, New York, NY,
USA, 41–50. https://doi.org/10.1145/1375634.1375641

[22] G. Grahne and J. Zhu. 2003. Efficiently Using Prefix-trees in Mining Frequent
Itemsets. (2003).

[23] Faruk Guvenilir and Yale N. Patt. 2020. Tailored Page Sizes. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture (Vir-
tual Event) (ISCA ’20). IEEE Press, 900–912. https://doi.org/10.1109/ISCA45697.
2020.00078

[24] S Ritter GJ Gordon J Stamper, A Niculescu-Mizil and KR Koedinger. 2010. Bridge
to algebra 2008–2009 (Challenge data set from KDD Cup).

[25] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What
is Twitter, a Social Network or a News Media?. In Proceedings of the 19th
International Conference on World Wide Web (Raleigh, North Carolina, USA)
(WWW ’10). Association for ComputingMachinery, New York, NY, USA, 591–600.
https://doi.org/10.1145/1772690.1772751

[26] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Em-
mett Witchel. 2016. Coordinated and Efficient Huge Page Management with
Ingens. In Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA,
705–721.

[27] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (Hollywood, CA, USA) (OSDI’12).
USENIX Association, USA, 31–46.

[28] Linux hugepage text 2015. hugepage_text.cc. https://chromium.googlesource.
com/experimental/chromium/src/+/refs/wip/bajones/webvr_1/chromeos/
hugepage_text/hugepage_text.cc.

[29] H.J. Lu, Kshitij Doshi, Rohit Seth, and Jantz Tran. 2006. Using Hugetlbfs for
Mapping Application Text Regions. In Linux Symposium.

[30] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2003. Practical,
Transparent Operating System Support for Superpages. SIGOPS Oper. Syst. Rev.
36, SI (dec 2003), 89–104. https://doi.org/10.1145/844128.844138

[31] Ashish Panwar, Naman Patel, and K. Gopinath. 2016. A Case for Protecting
Huge Pages from the Kernel. In Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems (Hong Kong, Hong Kong) (APSys ’16). Association for
Computing Machinery, New York, NY, USA, Article 15, 8 pages. https://doi.org/
10.1145/2967360.2967371

[32] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge Pages
Actually Useful. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems
(Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 679–692.
https://doi.org/10.1145/3173162.3173203

[33] C. H. Park, T. Heo, J. Jeong, and J. Huh. 2017. Hybrid TLB coalescing: Improving
TLB translation coverage under diverse fragmented memory allocations. In 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).
444–456. https://doi.org/10.1145/3079856.3080217

[34] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA).
558–567. https://doi.org/10.1109/HPCA.2014.6835964

[35] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhat-
tacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. 258–269. https:
//doi.org/10.1109/MICRO.2012.32

[36] John Tramm, Andrew Siegel, Tanzima Islam, and Martin Schulz. 2014. XSBench -
The development and verification of a performance abstraction for Monte Carlo
reactor analysis.

https://www.npmjs.com/package/react-ssr-benchmarks
https://www.npmjs.com/package/react-ssr-benchmarks
https://www.amd.com/en/support/tech-docs/56665-software-optimization-guide-for-amd-family-19h-processors-pub
https://www.amd.com/en/support/tech-docs/56665-software-optimization-guide-for-amd-family-19h-processors-pub
https://www.amd.com/en/support/tech-docs/software-optimization-guide-for-amd-family-17h-processors
https://www.amd.com/en/support/tech-docs/software-optimization-guide-for-amd-family-17h-processors
https://docs.freebsd.org/en/books/handbook/linuxemu/
https://docs.freebsd.org/en/books/handbook/linuxemu/
https://nodejs.org
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/pmu-events/arch/x86
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/pmu-events/arch/x86
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://man.freebsd.org/cgi/man.cgi?query=cpuset&sektion=1
https://man.freebsd.org/cgi/man.cgi?query=cpuset&sektion=1
https://man.freebsd.org/cgi/man.cgi?query=pmcstat&sektion=8
https://cgit.freebsd.org/src/tree/lib/libpmc/pmu-events/arch/x86
https://cgit.freebsd.org/src/tree/lib/libpmc/pmu-events/arch/x86
https://www.qemu.org/
https://www.sqlite.org/amalgamation.html
https://www.man7.org/linux/man-pages/man1/taskset.1.html
https://www.man7.org/linux/man-pages/man1/taskset.1.html
https://v8.dev
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/HPCA.2015.7056035
https://doi.org/10.1109/HPCA.2015.7056035
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1145/1772690.1772751
https://chromium.googlesource.com/experimental/chromium/src/+/refs/wip/bajones/webvr_1/chromeos/hugepage_text/hugepage_text.cc
https://chromium.googlesource.com/experimental/chromium/src/+/refs/wip/bajones/webvr_1/chromeos/hugepage_text/hugepage_text.cc
https://chromium.googlesource.com/experimental/chromium/src/+/refs/wip/bajones/webvr_1/chromeos/hugepage_text/hugepage_text.cc
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1109/MICRO.2012.32


Eliot H. Solomon, Yufeng Zhou, and Alan L. Cox

[37] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Trans-
lation Ranger: Operating System Support for Contiguity-Aware TLBs. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (Phoenix,
Arizona) (ISCA ’19). Association for Computing Machinery, New York, NY, USA,
698–710. https://doi.org/10.1145/3307650.3322223

[38] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. 2012. Large
Linear Classification When Data Cannot Fit in Memory. ACM Trans. Knowl.
Discov. Data 5, 4, Article 23 (feb 2012), 23 pages. https://doi.org/10.1145/2086737.
2086743

[39] Yufeng Zhou, Alan L. Cox, Sandhya Dwarkadas, and Xiaowan Dong. 2023. The
Impact of Page Size and Microarchitecture on Instruction Address Translation
Overhead. ACM Trans. Archit. Code Optim. 20, 3, Article 38 (jul 2023), 25 pages.
https://doi.org/10.1145/3600089

[40] Weixi Zhu, Alan L. Cox, and Scott Rixner. 2020. A Comprehensive Analysis
of Superpage Management Mechanisms and Policies. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 829–842. https:
//www.usenix.org/conference/atc20/presentation/zhu-weixi

https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/2086737.2086743
https://doi.org/10.1145/2086737.2086743
https://doi.org/10.1145/3600089
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

	Abstract
	1 Introduction
	2 Background
	2.1 Linux THP
	2.2 FreeBSD Superpages
	2.3 The ELF Executable File Format

	3 PTE Coalescing
	3.1 Microbenchmark
	3.2 Observed Behavior
	3.3 Discussion

	4 Methodology
	4.1 Experimental Setup
	4.2 Workloads

	5 Results
	5.1 Data TLB
	5.2 Instruction TLB
	5.3 Overall Performance
	5.4 Coalescing Region Size
	5.5 Discussion

	6 Related Work
	7 Conclusions
	References

